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Questions

1 Are maximum entropy (MaxEnt) and Bayesian inference
compatible with each other?

2 If so, which is more fundamental?
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Answer to Q1

YES. According to Jaynes (2003), MaxEnt sets up prior,
subsequent inference by Bayes, hence no contradiction.

YES. Bayes’s rule implies MaxEnt (more precisely, minimum
Kullback-Leibler information principle, KLIP hereafter)
asymptotically (Van Campenhout & Cover 1981, Csiszár
1984).

YES. Both MaxEnt and Bayesian inference special cases of
KLIP (Caticha & Giffin 2006).

In the past there were a few papers mentioning the tension
between MaxEnt and Bayes, but they were solving different
problems.
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Answer to Q2?

Given the result of Caticha & Giffin (2006), KLIP seems most
fundamental principle of inference, but is it really so?

All axiomatizations of entropy or MaxEnt (e.g., Shannon
(1948), Shore & Johnson (1980), Caticha & Giffin (2006))
depend on Bayes’s rule or its special case, “independence”.

Example from Shannon (1948):

H(p1, p2, p3) = H(p1, p2+p3)+(p2+p3)H

(
p2

p2 + p3
,

p3

p2 + p3

)
.
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Answer to Q2?

One view

Bayes more fundamental because Bayes’s rule axiomatized by Cox
(1946) and Jaynes (2003) in a very compelling way. Then KLIP
follows by van Campenhout & Cover (1981).

Another view

KLIP more fundamental because it can be applied in situations
with general constraints (not just moment constraints, also data;
see Caticha & Giffin (2006)). Also, Bayes cannot interpret
Lagrange multipliers, whereas in KLIP they are “shadow prices”.

I am still ambivalent between the two views, but I axiomatize KLIP
without using Bayes or independence to avoid tautology.
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Entropy, K-L information

p = { pi }: prior, q = { qi }: posterior.

Entropy (Shannon 1948):

H(p) = −
∑

pi log pi .

Kullback-Leibler information (Kullback & Leibler 1951):

H(q; p) =
∑

qi log
qi

pi
.

Entropy is K-L information for uniform prior
(with minus sign and additive constant).

MEP Maximum Entropy Principle (Jaynes 1957)

KLIP Minimum Kullback-Leibler Information Principle
(Kullback 1959)
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Jaynes’s Axioms of Inductive Reasoning

Jaynes “Probability Theory: Logic of Science” (2003)

1 Degrees of plausibility are represented by real numbers.

2 Qualitative correspondence with common sense.
(More on this next slide.)

3 Consistency.
1 If a conclusion can be reasoned out in 2 ways, the results

should be the same.
2 The decision maker (DM) takes into account all of relevant

evidence. DM is completely nonideological.
3 DM always represents equivalent states of knowledge by

equivalent plausibility assignments.
(Laplace’s principle of indifference.)
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Qualitative correspondence with common sense

Reverse monotonicity by negation:

p(A|C ′) > p(A|C ) =⇒ p(¬A|C ′) < p(¬A|C ).

Monotonicity preserved by logical conjunction:

p(A|C ′) > p(A|C )

p(B|A ∧ C ′) = p(B|A ∧ C )

}
=⇒ p(A∧B|C ′) ≥ p(A∧B|C ).
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Axioms of Information Gain

p(A) ∈ IR+: plausibility of proposition A.

1 Numerical representation: the information gain I is a function
of prior plausibility p and posterior plausibility q.

2 Continuity and monotonicity: the information gain is a
continuous, increasing function in posterior plausibility.

3 Path independence: the total information gain of updating the
prior plausibility p to the posterior q is independent of the
path it is updated. If two paths p → r → q and p → r ′ → q,
then I (p, r) + I (r , q) = I (p, r ′) + I (r ′, q).

4 Independence from the choice of unit: I (tp, tq) = I (p, q) for
t > 0.

5 Zero information gain for not updating: ∀p, I (p, p) = 0.
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Functional Form of Information Gain

Proposition

Under axioms 1–5, information gain has the form

I (p, q) = k log
q

p
,

where k > 0 is an arbitrary constant. (Set k = 1.)

This result, information gain = log posterior
prior , defined by

Goldman (1953), while I derived it.

Ex post average information gain,∑
qI (p, q) =

∑
q log

q

p
,

is exactly K-L information.
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New Axioms of Inductive Reasoning

1 Degrees of plausibility are represented by probabilities.
(Finitely additive measure: don’t use any probabilistic
concepts.)

2 The decision maker (DM) takes into account all of relevant
evidence. DM is completely nonideological.

3 Aristotelian logic: DM assigns zero plausibility to propositions
that contradict his knowledge.

4 Maximum conservatism: given prior plausibilities, DM updates
the plausibilities by minimizing the average information gain
of the posterior plausibilities subject to known information.
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Implication of New Axioms

Theorem

Under New Axioms,

1 DM employs minimum K-L information principle (KLIP),
2 minimum K-L information principle implies

Jaynes’s axioms, in particular the Bayes rule,
maximum likelihood,

and it is consistent
(in the sense that it leads to no contradiction).
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“KLIP ⇒ Bayes”

I : background information, {Ai } ,B: propositions.
{Ai } mutually exclusive and exhaustive.
p(Ai ∩ Aj |I ), p(Ai ∩ B|I ), p(Ai ∩ Bc |I ), etc. well defined.

Given B, DM updates by solving

min
q

∑
q log

q

p
s.t. (∀i) q(Ai ∩ Bc |B ∩ I ) = 0

n∑
i=1

(q(Ai ∩ B|B ∩ I ) + q(Ai ∩ Bc |B ∩ I )) = 1.

Using Lagrange multiplier technique, qi = q(Ai |B ∩ I ) satisfies

q(Ai |B ∩ I ) = q(Ai ∩ B|B ∩ I ) + q(Ai ∩ Bc |B ∩ I )

= q(Ai ∩ B|B ∩ I ) =
p(Ai ∩ B|I )∑n
i=1 p(Ai ∩ B|I )

=
p(Ai ∩ B|I )

p(B|I )
.
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“KLIP ⇒ Maximum Likelihood”

{ xn }: data, f (x): true density (unknown), f (x ; θ): model.

By Law of Large Numbers, K-L information is

H(f ; fθ) =

∫
f (x) log

f (x)

f (x ; θ)
dx

=

∫
f log f −

∫
f log fθ =

∫
f log f − Ef [log f (X ; θ)]

≈
∫

f log f − 1

N

N∑
n=1

log f (xn; θ),

so DM should maximize log-likelihood.
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Conclusion

Both Minimum Kullback-Leibler information principle (KLIP)
and Bayes axiomatized by inductive reasoning,
independent from probabilistic concepts.

Can we replace the “independence axiom” of Caticha & Giffin
(2006) by a non-probabilistic axiom similar to my approach?
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My work in economics

Moment conditions arise in economic contexts
(demand = supply, Euler equation u′(ct) = β E[u′(ct+1)]).

I apply KLIP to infer the distribution of economic variables.

Interpret Lagrange multiplier as price.
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